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We discuss properties of a cross junction composed of active areas, in which the Belousov-Zhabotinsky
reaction proceeds, and passive stripes. The response of such a junction with respect to pulses of excitation
arriving from perpendicular directions is studied. It is shown that the device works as a coincidence detector
because the second pulse is stopped if it arrives earlier than a certain characteristic time after the first one.
Using the Rovinsky-Zhabotinsky model, we calculate the size of the cross junction and specify its temporal
characteristics. We suggest how the cross junction can work as a switch of a chemical signal.

Introduction

The idea of information processing with purely chemical
devices is attractive both as an interesting scientific question
and because of its potential technological applications. Various
theoretical studies and experiments related to this problem have
been reported in recent years. They include successful applica-
tions of chemical waves in image processing for both contrast
and contour analysis presented in ref 1. Another class of
chemical devices that process information utilize the fact that a
chemical pulse, which can be produced in excitable or oscillatory
media, carries information. The area of a high concentration of
a particular reactant may be considered as corresponding to the
logical “true” state, while the area of a low concentration
corresponds to the logical “false”. Using this idea the chemical
reactors that work as the simplest logical gates (AND, OR,
NOT) were constructed.2,3

It has been found4 that a chemical system may perform more
complex logical operations if it is inhomogeneous and composed
of “active” regions, in which reactions occur, and “passive”
areas, where some of the reagents are absent and so only part
of reactions proceed there. In practice it means that an
immobilized catalyst is inhomogeneously distributed in space.
The passive areas are those which do not contain catalyst. In
the following we discuss results obtained for such reaction
scheme that the system is in an excitable state within the active
regions.

Let us consider two active areas separated by a stripe of the
passive one. A pulse of excitation propagating in one of these
areas may excite the other active area if the passive stripe is
narrow. The maximum width of the passive stripe for which
such excitation still occurs is called the penetration depth. It
has been found that the penetration depth depends on the
geometry of the junction and on the direction of propagation
of the excitable pulse.4 Therefore the topology of a reactor, its
geometrical size, and the directions of incoming chemical
“signals” imply its logical functions. A few particular arrange-
ments of active and passive fields have been studied, and such

devices as a chemical diode4-7 and a chemical memory, which
can be written, read, and erased, have been constructed.4 The
predictions of the theory5 have been nicely confirmed by
working experimental setups.6,7

In our recent work8 we have studied the properties of a plane
(two-dimensional) system, composed of active (excitable) and
passive (diffusion) areas in which no reaction occurs and only
one of the reagents (u) can diffuse. In the active areas the
system’s dynamics was described by a simple FitzHugh-
Nagumo type model:4,9,10

with the parameters given by Motoike and Yoshikawa in ref 4.
In eqs 1 and 2 the valueγ ) 1 corresponds to active regions
andγ ) 0 to passive ones. Such model uses a simplified version
of FitzHugh-Nagumo dynamics originally introduced to de-
scribe excitable behavior of nerve tissues. This dynamics reflects
the basic features of an excitable system, so it has been used as
a generic model for nonlinear chemical phenomena.11 However,
because the values of the variables may be negative, their
association with concentrations of reagents is not direct. Thus,
the calculations based on eqs 1 and 2 can give the qualitative
information on system’s evolution only.

In ref 8 we have considered a junction of two perpendicular
channels, as shown on the scheme in Figure 1, where the thick
black lines stand for the stripes of diffusion field and the white
areas 1-9 are the active regions. We have investigated the
response of such system with respect to pulses coming from
perpendicular directions (e.g. areas 4 and 8 in Figure 1) by
solving numerically the reaction-diffusion eqs 1 and 2. The
width of the diffusion stripes has been selected in such a way
that a single pulse propagating in one of the channels is not
able to move “sideways” because the width of the stripe of the
diffusion field is larger than the penetration depth for a pulse
moving parallel to the interface of active and passive regions.
On the other hand, the width of the diffusion stripes is smaller
than the penetration depth for a pulse perpendicular to the
interface, so the pulse can propagate through such stripe.

* Corresponding author. E-mail: gorecki@ichf.edu.pl.
† Polish Academy of Sciences.
‡ College of Science.
§ ICM UW.

τ∂u
∂t

) -γ[ku(u - R)(u - 1) + V] + Du∇2u (1)

∂V
∂t

) γu (2)

8189J. Phys. Chem. A2001,105,8189-8195

10.1021/jp011072v CCC: $20.00 © 2001 American Chemical Society
Published on Web 08/09/2001



It is obvious that a cross junction of excitable areas with the
geometry shown in Figure 1 works as a coincidence detector
of the incoming pulses. If the moments of their arrivals to the
central field are well separated, they do not interact and each
of them follows its own path. On the other hand, if the later of
the pulses arrives just after the first one, it finds the central
part in a refractory regime. Therefore the central field cannot
be excited and so the pulse is stopped. However, for a certain
range of the time difference between arriving pulses, we
observed an additional interesting phenomenon presented in
Figure 2A-C.8 When the second of the incoming pulses arrives
(in the presented case after∆t ) 4.64), it finds the central field
inhomogeneously relaxed. The left-hand side of the central field,
from which the first of the pulses entered, may be excited easier
than the right-hand side one. As the result, the excitation of the
central area by the second pulse has a radial shape originating
from the bottom left corner (see Figure 2B). When this excitation
arrives at the boundaries of fields 2 and 6 (in Figure 1), it is
almost perpendicular to the passive stripes and so it is able to
get through them. As the result the pulse duplicates creating
two pulses propagating in fields 2 and 6 (see Figure 2C).

The motivation for this work was to check whether such
switch of a chemical signal can be constructed on the basis of
an excitable chemical system with the ferroin-catalyzed Be-
lousov-Zhabotinsky reaction (B-Z).12 We present the results
obtained for the Rovinsky-Zhabotinsky model of the B-Z
reaction13,14and estimate the size of the system and its temporal
characteristics. Our calculations indicate the potential experi-
mental difficulties which can appear when one tries to realize
a cross junction with the properties discussed above in a
laboratory.

Cross Junction of the Excitable System with the
Belousov-Zhabotinsky Reaction

In this section we discuss the properties of a cross junction
of active and passive fields, arranged as shown in Figure 1 in
the case of dynamics corresponding to the Belousov-Zhabot-
insky reaction (B-Z). We study the results of this system with
respect to pulses coming from the perpendicular directions. The
propagation of pulses is calculated using the Rovinski-
Zhabotinsky model of the Belousov-Zhabotinsky reaction.13,14

The model is based on the Field-Körös-Noyes15,16mechanism
of the Belousov-Zhabotinsky reaction14 completed by the
hydrolysis of bromomalonic acid to tartronic acid.13 In the
Supporting Information we repeat the calculations, which show

how to transform the original five variable model into the
simplified, two variable one.

The Rovinsky-Zhabotinsky model uses two variables,x and
z, corresponding to dimensionless concentrations of the activator
HBrO2 and of the oxidized form of catalyst Fe(phen)3

3+. In the
active regions, which contain the catalyst, the time evolution
of the concentrations ofx andz is described by eqs 3 and 4:

In the passive regions, without catalyst, the concentrations ofx

Figure 1. Geometry of the considered cross junction device: white
areas correspond to the excitable field and the darker stripes to the
diffusion one. The excitable areas are numbered to simplify their
description in the text.

Figure 2. Switching behavior of a cross junction in the FitzHugh-
Nagumo model. The figures show the time evolution of the concentra-
tion of activator in the case the second pulse of excitation arrives∆t
) 4.64 after the first one. The lighter areas correspond to higher
concentration. (A)t ) 4.0. The first pulse arrives at the central field.
(B) t ) 8.5. The second pulse is asymmetrically generated in the central
area. (C)t ) 11.5. The second pulse splits into two, propagating in
areas 2 and 6.

∂x
∂τ

) 1
ε[x(x - 1) - (2qR z

1 - z
+ â)x - µ

x + µ] + ∇F
2x (3)

∂z
∂τ

) x - R z
1 - z

(4)

8190 J. Phys. Chem. A, Vol. 105, No. 35, 2001 Sielewiesiuk and Go´recki



andz evolve according to eqs 5 and 6:

All variables and coefficients in eqs 3-6 are dimensionless.
The real concentrations of HBrO2 and Fe(phen)3

3+ (X, Z) are
related to (x, z) in the following way:

The coefficientsR, â, µ, andε are defined as

where k(i denote the rate constants of the corresponding
reactions in the Field-Körös-Noyes model13-16 and A )
[HBrO3], B ) [CHBr(COOH)2], C ) [Fe(phen)32+] + [Fe-
(phen)33+], R) [‚CBr(COOH)2], U ) [HBrO2

+], X ) [HBrO2],
Y) [Br-], Z ) [Fe(phen)33+], andq is the stoichiometric factor.
Parameterh0 denotes the Hammett acidity function, describing
the effective proton concentration,17-19 and it is expressed in
mol/L.

Equations 3-6 correspond to a typical experimental situation
in which the catalyst is immobilized on a membrane, whereas
the activator is in the solution and it can diffuse (compare refs
7 and 20). Therefore, we assume free boundary conditions
between the active and passive areas.

In our numerical calculations for the B-Z system we use
the same values of parameters as considered in refs 13, 14, and
21: A ) 0.02 M;B ) 0.2 M; C ) 0.001 M;k1 ) 100 M-2/sec;
k4 ) 1.7 × 104 M-2/sec;k5 ) 107 M-2/sec;k7 ) 15 M-2/sec;
K8 ) 2 × 10-5 M/sec; k13 ) 10-6 s-1; q ) 0.5. The
corresponding values of scaled parametersR, â, ε, andµ are
0.017h0

-2, 0.0017h0
-1, 0.1176, and 0.00051, respectively. For

these values of parameters the system becomes excitable ifh0

< 0.9899.21

Equations 3-6 are written in the dimensionless units of time
τ and distanceF. The relationships between them and the real
time t and distancer are the following:

where Dx is the diffusion constant of the activatorx. The
expressions (13) and (14) lead to the following relationship

between realV and dimensionlessν velocities of a pulse:

The constant which transformsτ into t is immediately fixed
when the values ofA, B, C, andh0 and the rate constantsk(i

are defined. For the parameters chosen and assumingh0 ) 0.5,
it reads

Similar relationships for distance and velocity depend also on
the values of the diffusion constant:

However, the diffusion constant strongly depends on the medium
the reactions proceed in. In the aqueous solution it is of the
order of 10-5 cm2/s,7,13,17,19,21whereas for a reaction in a gel it
may be reduced by 2 orders of magnitude.7,22 To make our
results more general, we present all distances and velocities in
the double form: dimensionless and as the function of the ratio
of diffusion constantsDX/DX0, where the value ofDX0 corre-
sponds to a particular choice of the diffusion constant:DX0 ) 1
× 10-5 cm2/s.13,21 The second number allows one to see more
clearly the real spatial and temporal scale of the considered
process.

The system of partial differential eqs 3-6 has been solved
numerically using the explicit Euler technique. The constant
time step dτ ) 0.001 is used. The pulses are initialized at the
boundaries by increasing the concentration ofx to 0.1. Our
experience with the cross junction for the FitzHugh-Nagumo
model says that the switching properties of the system come as
the consequence of the strong dependence of the penetration
depth on the angle of incidence when a chemical pulse
propagating on an active semiplane “hits” the boundary of
another (passive) semiplane. For the FitzHugh-Nagumo model
the penetration depth for a pulse propagating parallel to the line
of junction is by 6% smaller than the penetration depth for a
pulse propagating perpendicularlydc.4 It means that a passive
layer of a widthd (0.94dc < d < dc) is transparent for a pulse
propagating perpendicularly but impenetrable for a pulse
propagating parallel to it (for convenience, let us call them a
“perpendicular” and “parallel pulse”, respectively).

Studying the B-Z system, we have first consideredh0 )
0.97 and found that the penetration depths for pulses traveling
perpendicularly or parallel to the line of junction of active and
passive fields are almost the same, as they differ by less than
0.05%. Therefore it seems to be very difficult to make a passive
stripe impenetrable for a “parallel pulse” and penetrable for a
“perpendicular” one in the laboratory, even if the lithographic
methods for the introduction of catalyst are used.23,24 Plotting
the isoclines of eqs 3 and 4 (without the diffusion term), one
can notice that decrement ofh0 stabilizes the stationary solution
of eqs 3 and 4. This results in a faster relaxation of the active
medium and remarkably increases the asymmetry in the
penetration depth. From the chemical point of view decreased
h0 corresponds to lower concentration of H+ in the system. The
further results have been obtained forh0 ) 0.5. In this case the
stationary concentrations ofx andz in the active area are
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V (cm/min)) 20.58xDX/(cm2/s)ν (18)

xsa) 7.283× 10-4 (19)
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(which is the stationary solution of eqs 3 and 4) and the
stationary concentrations in the passive area (the stationary
solution of eqs 5 and 6) are given by

Forh0 ) 0.5 the penetration depth for a “parallel pulse” is about
1% smaller than for a “perpendicular pulse”. Creating a stripe
of passive field with higher than 1% accuracy in its width is
still a hard but not an impossible task from the experimental
point of view.

What makes the Rovinsky-Zhabotinsky model more sensi-
tive to the width of a passive barrier than the FitzHugh-Nagumo
one? We believe that the essential difference comes from the
reactions in the passive area. The observations of pulses crossing
a barrier have demonstrated that in the FitzHugh-Nagumo
model the values of concentration of activator (u) within the
barrier are similar to those in a propagating pulse. Contrary,
the reactions appearing in the Rovinsky-Zhabotinsky model
(eq 5) reduce the concentration ofx by 2 orders of magnitude
with respect to its amplitude in the active area. The reactions
make the penetration depth far less sensitive to the direction of
incident pulses.

To estimate penetration depths let us consider a plane filled
with a catalyst (i.e. in an active state) divided by a stripe of a
passive region. Initially both active and passive regions are in
their stationary states. Next, we initiate a plane pulse of
excitation. Performing a set of numerical experiments for
different widths of the passive stripe, we have found it is
transparent for a “perpendicular pulse” but impenetrable for a
“parallel” one if the width of the stripe is within the interval
[3.287, 3.318) in the dimensionless units. In the real scale it is
equal to [0.03029xDX/DX0

cm, 0.03059xDX/DX0
cm). Accord-

ing to our calculations the passive stripes narrower than 3.287
(0.03029xDX/DX0

cm) are penetrable for any pulse of excita-
tion, independently of its direction, whereas the stripes wider
than 3.318 (0.03059xDX/DX0

cm) are always impenetrable.
Experimental studies on penetration of a passive stripe may bring
important information on the applicability of eqs 3-6.

Next we have considered the geometry presented in Figure
1. In the majority of calculations the square is covered with a
grid of 320× 320 points. At the beginning the concentrations
of x andz in both active and passive areas correspond to their
stationary statesxsa, zsa andxsp, zsp, respectively. The boundary
conditions between the excitable and diffusion fields are free.
We use no flux boundary conditions on the lower and on the
left-hand side border of the system. On the other hand, we fix
the values ofx andz as equal to the corresponding stationary
states (xsa, zsa, andxsp, zsp, respectively) at the upper and the
right-hand side border. This way the pulses that arrive there
may freely “leak out” of the system (they do not accumulate in
the neighborhood of the border) and we avoid any influence of
the system’s boundary on the time evolution. The pulses in the
signal channels 4-5-6 and 8-5-2 (see Figure 1) are generated
by increasingx to the value 0.1 at the boundaries of areas 4
and 8. We have considered the passive stripes which are 3.291
(0.03034xDX/DX0

cm) wide. From the calculations we have
found the minimum width of the signal channels. For the
selected width of the passive stripes the pulse initiated for
example in area 8 always arrives to the central field 5. However,

if the central field is too small then the amplitude of the activator
is not high enough to excite the opposite area 2. We have found
that the minimum inner width of the signal channel for which
pulses can propagate through the junction is about 10.526
(0.097029xDX/DX0

cm).
Knowing the width of a semitransparent passive barrier and

the width of an active channel, we can build a cross junction of
the excitable B-Z system which should work similarly to that
for FitzHugh-Nagumo dynamics.8 The pulses initiated in the
horizontal channel (in area 4 in Figure 1) should be able to get
through the junction (area 5 in Figure 1) and arrive at the other
side of the device (area 6 in Figure 1) without escaping from
the channel (to areas 1-3 and 7-9 in Figure 1) and due to the
symmetry of the device the pulses in the vertical channel should
behave in the same way. Now let us consider the interaction
between pulses coming from perpendicular directions. At the
beginning the system is in its stationary state. In calculations
we consider two sizes of the square the junction is built on:
198.13 × 198.13 and 263.3× 263.3 (corresponding to
1.8264xDX/DX0

cm and 2.427xDX/DX0
cm), for which we use

square lattices of 240× 240 or 320× 320 points, respec-
tively. Thus, the space step in all these simulations dF )
0.82 remains constant. Two channels with the width of 66.648
(0.61436xDX/DX0

cm) or 132.473 (1.22114xDX/DX0
cm) for

smaller and larger system respectively are placed symmetrically
on the square. In all the computer experiments the width of the
diffusion stripes is 3.291 (0.03034xDX/DX0

cm). The results
obtained for different grids are consistent. The first pulse is
initiated on the left-hand side border of the area 4 in Figure 1.
After a time∆τ another pulse is initiated on the lower border
of the area 8. Because the distance from both borders to the
junction is the same, the time difference between the arrival of
the first and the second pulse at the junction is also∆τ.

We observe that if the second pulse arrives at the central field
earlier than∆τmin ) 107 (910 s) after the first one, it is stopped
at the central field. On the other hand if∆τ > ∆τmax ) 115
(978 s), both pulses follow their signal paths without interaction.

Although we are able to build a coincidence detector on the
basis of the cross junction of excitable B-Z systems with the
dynamics given by the Rovinsky-Zhabotinsky model, the other
interesting features of the junction, described in ref 8, do not
occur in the model used here. In particular, we do not observe
the “AND” logical gate behavior, when two pulses coincide,
producing an output pulse between the channels (in areas 7 or
9 in Figure 1), or the “chemical switch”, when the second pulse
changes the direction of propagation and follows the first one.8

To see more clearly why the “chemical switch” does not
work for the B-Z system, we have performed calculations for
the unsymmetrical junction presented in Figure 3. Here we
use a 263.3× 263.3 (2.427xDX/DX0

cm) square, covered with
the grid of 320× 320 points. The width of the stripes of
the diffusion field isw ) 3.291 (0.03034xDX/DX0

cm). The
first pulse is initiated in the horizontal channel (area 4
in Figure 1). The channel is located at the distancedlower )
56.363 (0.51956xDX/DX0

cm) from the lower boundary; its
width is dhoriz ) 99.560 (0.91775xDX/DX0

cm). After the
time ∆τ ) 109.0 (927 s) another pulse is initiated in the
vertical channel (area 8 in Figure 1). This channel is
located at the distancedleft ) 56.363 (0.51956xDX/DX0

cm)
from the left-hand side boundary; its width isdvert ) 152.220
(1.40317xDX/DX0

cm). We see that when the second pulse
gets to the central area of the junction, it propagates in both
vertical and horizontal directions. The propagation to the right

zsa) 1.060× 10-2 (20)

xsp ) 5.010× 10-4 (21)

zsp ≡ 0 (22)
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fails, while the propagation upward continues, and what is very
important, the pulse is able to pass from its own channel (area
2 in Figure 1) to the upper right-hand side part of the system
(area 3 in Figure 1). Comparison of Figures 3D,E shows that
the pulses trying to get from region 5 to 6 and from region 2 to
3 (in Figure 1) “attack” the stripe of the diffusion field both at
the same angle, so the geometrical factor is not the reason for
the propagation failure. The failure occurs apparently because
the active medium in area 6 is still not relaxed after the first
pulse. We have performed a set of simulations for a set of
smaller time shifts∆τ (until the second signal is not able to
enter the junction at all for∆τ ) ∆τmin ) 107 (910 s)) as well
as for the larger ones (until the second signal propagates through
the junction and does not “feel” the influence of the first signal
at all for ∆τ ) ∆τmax ) 115 (978 s)) and have never found the
second signal turning right from area 5 to 6. So, we have not
found the “chemical switch” behavior in the Rovinsky-
Zhabotinsky model, even though the geometry of the system
favors it!

The difference with respect to the FitzHugh-Nagumo model
may be explained as follows: in the Rovinsky-Zhabotinsky
model the distance at which inhibitor (z) relaxes is by 1 order
of magnitude larger than the one for activator (x), whereas for
FitzHugh-Nagumo bothu andV relax at the same spatial scale.

Looking at Figures 3E,F, we can see that the simplest idea
on how to turn the second pulse right is to direct the pulse
excited in the upper right-hand side corner of the system (area
3 in Figure 1) into an additional channel. This has been done
in the computer experiment illustrated in Figure 4. The sizes of
the square, grid size, width of the diffusion stripes, and the time
shift between the signals are the same as in Figure 3.
The main channels have identical width ofdchannel) 132.473
(1.22114xDX/DX0

cm) and they are placed symmetrically in
the middle of the square (at the distanced ) 66.236 (0.61057

xDX/DX0
cm) from each border). An extra channel of the

diameterdextra ) 33.735 (0.31097xDX/DX0
cm) is located in

the upper right-hand side corner of the system. In Figure 4F
one can see that the pulse is in fact excited in that extra channel.
Our results suggest that this type of behavior can be observed
(at least) for∆τ ∈ [108,111] (918, 944 s).

Another way of building a “chemical switch” is to speed up
the relaxation of the active chemical medium in the area 6
behind the first pulse. One can do it easily by increasing the
diffusion coefficient in the region 6. Now a pulse propagates
faster, and the recovery time of the medium is shorter. The idea
is demonstrated by results of another computer experiment
presented in Figure 5. The geometry is the same as in Figure 4,
except there is no the extra channel. Instead, the diffusion

Figure 3. Two pulses in an unsymmetrical cross junction of systems
with Rovinsky-Zhabotinsky dynamics. Figures show the concentration
of activator for a few selected moments in the case the second pulse of
excitation arrives∆τ ) 109 after the first one. The lighter areas
correspond to higher concentration ofx. (A) τ ) 54. The first pulse
passes through the horizontal channel. (B)τ ) 114. The second pulse
approaches in the vertical channel. (C)τ ) 134. The second pulse
propagates asymmetrically in the central area. (D)τ ) 150. Although
the geometrical condition is fulfilled, the pulse cannot pass into area
6, while it gets into area 2. (E)τ ) 170. Asymmetrical propagation of
the second pulse occurs in area 2. (F)τ ) 184. The pulse gets into
area 3.

Figure 4. Two pulses in a symmetrical cross junction of systems with
Rovinsky-Zhabotinsky dynamics with an additional channel. Figures
show concentration of activator for a few selected moments in the case
the second pulse of excitation arrives∆τ ) 109 after the first one. The
lighter areas correspond to higher concentration ofx. (A) τ ) 54. The
first pulse passes through the horizontal channel. (B)τ ) 114. The
second pulse approaches in the vertical channel. (C)τ ) 140. The
second pulse propagates asymmetrically in the central area. (D)τ )
160. The pulse is stopped on the right-hand side boundary of the vertical
channel. (E)τ ) 170. Asymmetrical propagation of the second pulse
occurs in area 2. (F)τ ) 182. The pulse gets into area 3 (as in Figure
3F) but also generates a pulse in the extra channel.
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coefficient of the activator is doubled in the area 6, if compared
to the rest of the system. The first pulse travels in the horizontal
channel (areas 4-6 in Figure 1) and speeds up remarkably after
crossing the junction (in area 6 in Figure 1). After∆τ ) 109.0
(927 s) a pulse in the vertical channel is initiated. This second
pulse gets through the junction (within its own channel, area 2
in Figure 1), but also, as required, it follows the first pulse. As
in the previous simulation (Figure 4) this behavior can be
observed (at least) for∆τ ∈ [108,111] (918, 944 s).

The typical velocity of the pulse in our system is about 4.128
(0.2686xDX/DX0

cm/min), which is a reasonable value for a
chemical wave in the B-Z reaction.

Conclusions

In this paper we have demonstrated that the properties of a
cross junction of active fields with FitzHugh-Nagumo dynamics
studied in our previous paper8 can be realized in a junction of
excitable systems with Belousov-Zhabotinsky reaction. These
properties include coincidence detection (the pulses coming
within times shorter than a characteristic one are stopped) and
switching the direction a chemical pulse propagates.

We have found that to construct a working cross junction on
the basis of the Belousov-Zhabotinsky system one needs to
create passive stripes with a very high accuracy. If the diffusion

constant of the activator corresponds to the value characteristic
for an aqueous system (D0), then the stripe without catalyst
should be 0.3034 mm wide with only 1% of tolerance. We think
that so high precision can be achieved with the newly developed
lithographic technique of introducing catalyst on the surface23,24

The most interesting feature of a cross junction is its ability
to switch the direction of an incoming signal. We have
discovered such effect for a symmetric cross junction (the
perpendicular signal paths are of equal width) and FitzHugh-
Nagumo dynamics. Nevertheless, we are unable to find a similar
effect for the B-Z system, which seems to be connected to its
slower relaxation. We have found that a switch of a chemical
signal can be constructed if a cross junction of excitable B-Z
systems is not symmetric. Two working schemes, in which the
asymmetry is related to the diffusion coefficient or to the
existence of another output channel, have been studied.

Our numerical “experiments” have shown that the width of
signal channels does not have significant influence on the
behavior of the cross junction (if only the channels are wider
than the minimum 0.9703 mm). The system for which the signal
paths are three times wider than those shown in Figures 4 and
5 have been investigated (thus, the signal channels are 3.66 cm
wide). It has been found that for this system the pulses which
arrive earlier than∆τ ) 100 after the first one are stopped.
Such result may be expected as the “transparency” of the central
field is related to the time the system spends in the refractory
regime, which hardly changes with size. On the other hand, the
interval of times for which the system works as a signal switch
becomes slightly longer for the larger system. This is related to
the direction of propagation of the second pulse in the central
area. We have observed that for three times wider signal
channels (3.66 cm) the junction works as shown in Figure 3,
even if the second pulse arrives∆τ ) 120 after the first one.

We believe that the suggested devices based on the cross
junction of active fields extend a class of chemical systems,
which process information and may be used as elements of more
complex structures.

Last but not least, we mention that in the case of the
Belousov-Zhabotinsky reaction such properties as the penetra-
tion depth strongly depend on the properties of the model.
Therefore the comparison between calculations and carefully
prepared experiments for a junction of passive and active areas
may be a good verification of the model and the values of
parameters used.

Supporting Information Available: The detailed step by
step derivation of eqs 3-6 from the reaction scheme. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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